Breathing is a complex behavior. It is voluntary and involuntary. It is greatly influenced by emotion. It is synchronized with complex speech behavior. Basic neurophysiological control of breathing originates in the respiratory centers located in the brain stem, the pons and medulla, where breathing rate and volume are regulated based on CO2 levels. While in a coma, breathing mechanics (rate and volume) track CO2 levels precisely. There are other breathing centers throughout the brain including the limbic system (emotion), the speech areas of the brain, and the frontal cortex (voluntary control). These other regulatory centers may interfere with adaptive breathing, resulting in deregulated breathing, overbreathing that is often associated with breath holding, gasping, sighing, chest breathing, rapid breathing, reverse breathing (contracting the diaphragm versus allowing it to relax while breathing out), and so on.
http://www.breathing.com/tests.htm
CO2 Facts: Acid/Alkaline Balance and the Immune System: Carbon dioxide, through its conversion to carbonic acid, is a primary regulator of the acid/alkaline balance of the blood. The body (organs) has several needs for different levels of pH). A reduction in carbon dioxide shifts the body's pH toward alkalinity, which alters the rate of activity of other biochemical processes. An blood alkaline state weakens the immune system, thus making the body more susceptible to viruses and allergies.
Vessels: Carbon dioxide in the plasma helps to dilate smooth muscle tissue. Insufficient carbon dioxide can cause spasms throughout the body, including the brain, the bronchi, and other smooth muscle tissues. Good examples are the spasms that take place during asthma attacks and migraines.
The Cardiovascular System: Carbon dioxide helps regulate the cardiovascular system. Too little carbon dioxide can result in many problems, including angina, high blood pressure, chest pain, myocardial infarcts, strokes, and so on.
The Digestive System: A direct relationship exists between the level of carbon dioxide in the body and the functioning of the digestive glands—especially between the level of carbon dioxide and the intensity of gastric secretion. Too little carbon dioxide can eventually lead to poor digestion and eventually to ulcers.
Respiration: Chemistry and Mechanics “Respiration” is behavioral-physiologic homeostasis, a form of self-regulatory behavior, which constitutes a transport system for customized delivery of atmospheric oxygen to each and every tissue based on their specific metabolic requirements, including the transport of metabolic carbon dioxide from the cells to outside air. The “mechanics” of respiration constitute “breathing,” the use of the lungs for moving oxygen, carbon dioxide, and other gases to and/or from the blood. The “chemistry” of respiration constitutes the physiology of moving oxygen from the lungs to the cells, and carbon dioxide from the cells to the lungs. Optimizing respiration means good “chemistry through good “mechanics.”
Good breathing “mechanics” rather than good respiratory physiology, has unfortunately become almost the exclusive focus of breathing training and learning, often along with insistence on tying it to “relaxation” training regimens in the context of specific philosophical and/or professional agenda. As a result, it is not surprising then, that at least 50 percent of therapists and trainers who teach breathing actually deregulate respiratory chemistry by inducing “overbreathing” with their instructions to trainees, not realizing that they are inducing system-wide physiological crisis through the establishment of hypocapnia, i.e., carbon dioxide deficit. Unfortunately, based on this kind of thinking, myths and misunderstandings about “good” breathing often constitute the “working knowledge” of professionals and lay audiences alike. Here are some of them:
Good breathing means relaxation.
No. Good breathing is important in all circumstances, whether relaxed or not.
Learning good breathing requires relaxation.
No. This would mean that during most life circumstances, breathing is maladaptive.
Diaphragmatic breathing is synonymous with good breathing.
No. In many instances one may begin to overbreathe as a result of switching from chest to diaphragm.
Good respiration is all about the mechanics of breathing.
No. Good breathing means ventilating in accordance with metabolic requirements.
Diaphragmatic, deep, slow breathing means better distribution of oxygen.
No. Mechanics may look letter perfect, but oxygen distribution may be poor.
Underbreathing, with the result of oxygen deficit, is common.
No. To the contrary, overbreathing is common.
Overbreathing: Effects on Cognition Cognitive and perceptual deficits are perhaps most clearly understood by newcomers to this physiology by examining the effects of hypoxia on the behavior of pilots. Every pilot knows about the cognitive and perceptual deficits resulting from the effects of hypoxia in high altitude chambers, including impaired decision-making, perceptual motor skills, information processing, problem solving, task completion, memory, thinking, and communication effectiveness. Serious cerebral hypoxia means that even the easiest of tasks become significant mental challenges, e.g., simple navigational calculations during an engine-out procedure. In fact, overbreathing is routinely monitored in fighter pilots while in flight. Particularly noteworthy, as is often emphasized by on-looking observers, is the fact that these performance decrements go completely undetected by those actually suffering from the hypoxia. Overbreathing at sea level and the resulting hypoxia produce precisely these same effects! Cognitive, perceptual, and motor skill deficits, brought about by hypoxia (oxygen deficit) are yet further exacerbated by cerebral hypoglycemia (glucose deficit, as a result of vasoconstriction) that may compromise brain functioning to a yet greater degree. The potentially debilitating combination of cerebral oxygen and glucose deficits resulting directly from overbreathing may seriously compromise and/or disrupt ability to attend, focus, concentrate, imagine, rehearse the details of an action (e.g., golf swing), initiate performance, play a musical instrument, sing, engage in public speaking, and perform all kinds of other complex tasks. There is a fine line between vigilance and stress. In the transition from vigilance to stress, i.e., from positive attentiveness to guarded defensiveness (fight-flight behavioral patterns), overbreathing may be immediately instated with its debilitating effects occurring within less than a minute. This same kind of transition may occur when task-demand exceeds a certain level of complexity or when relationship challenge exceeds a certain level of emotionality: overbreathing as a component of defensive posturing takes over. Task-induced overbreathing for example can insidiously and unsuspectingly contribute to the degradation of human performance, insidious because the performer is neither likely to be aware that overbreathing is taking place, nor have any idea whatsoever as to its effects.
Overbreathing: its Effects on Emotion Cerebral hypoxia and cerebral hypoglycemia not only have profound effects on cognition and perception but also on emotionality: apprehension, anxiety, anger, frustration, fear, panic, stress, vulnerability, and feelings of low self-esteem. Cerebral (brain) oxygen and glucose deficits may trigger “disinhibition” of emotional states, i.e., release of emotions otherwise held “in check.” Loss of emotional control, intensification of emotional states, and exacerbation of debilitating stressful states of consciousness may result from overbreathing in challenging and adverse circumstances, e.g., flying phobias and debilitating public speaking anxiety. Emotional discharge in challenging environments itself may, of course, further exacerbate cognitive and other performance deficits. Failure to understand the source of physical sensations resulting from overbreathing, e.g., light-headedness, tingling of the skin, tightness of the chest, sweaty hands, and breathlessness, typically leads to a false interpretation of their meaning. The incorrect, and usually negative, self assessment that may result, e.g., “I am losing control,” is likely to elicit secondary emotional responses (e.g., fear) and further exacerbate the ones directly resulting from cerebral oxygen and glucose deficits. And indeed, practitioners and trainers themselves, not familiar with the effects of overbreathing, may unfortunately also misinterpret these secondary effects, taking them as evidence supporting their own biases about the significance of the kinds of complaints reported by the client, e.g., “relaxation moves you closer to yourself, and this makes you uncomfortable. Overworking is your way of protecting yourself.” Sometimes overbreathing is deliberately induced for the very reason that it can trigger emotional memories and states, e.g., rebirthing. Stanislav Grof’s Holotropic Breathwork, widely known for its use in triggering emotional and memory release, is an excellent example of how overbreathing lowers the threshold for emotional expression. Some breathing inductions used in natural child birth, for example, involve extreme forms of overbreathing, based on the premise that disorientation reduces capacity to focus on pain; from a respiratory chemistry perspective, however, this amounts to induction of system-wide crisis with potentially adverse effects on the infant.
Overbreathing: Effects on Performance Compromising the blood buffering system (i.e., reduced capacity to regulate acidosis) means reduced physical capacity and endurance, ranging from limiting athletes in their pursuit of achieving peak levels of physical performance, to contributing to the incapacitation of individuals with fatigue and unable to perform the simplest of tasks without exhausting their supply of buffers. Incrementally increasing the workload on an exercise bike or treadmill increases metabolism, and hence the output of carbon dioxide. Normal ventilation means that the CO2 exhaled is consistent with level of metabolism; there is no overbreathing. Eventually, however, when buffers become depleted and can no longer neutralize lactic and other acid byproducts, overbreathing becomes a short-term solution to the resulting acidosis, i.e., carbonic acid is reduced, thus offsetting the build up of other acids. Monitoring CO2 levels during exercise on an exercise bike or treadmill permits an observer to take note of this critical point, the point at which overbreathing is itself a compensatory response to buffer depletion, the point at which physical exhaustion can be identified. And, as described previously, chronic overbreathing itself may lead to buffer depletion, thus ultimately reducing physical capacity and endurance to a point where simple exercise becomes equivalent to the maximum endurance effort of an athlete.
Chronic Deregulation: Compensatory Behavioral-Physiologic Activity and its Price
Bicarbonates are required for controlling acidosis (when blood becomes less alkaline than normal, less than 7.38), i.e., neutralizing acids, brought about through physical activity (e.g., lactic acid) as well as through other physiologic activities (e.g., ketoacidosis as a result of diabetes). Chronic hypocapnia resulting from overbreathing ultimately leads to compensatory renal unloading of bicarbonates (inhibition of bicarbonate reabsorption in the kidneys), which lowers blood and intracellular pH toward normal levels, but in the end neither completely renormalizing nor stabilizing pH levels. Unfortunately, chronic compensatory behavior may ultimately seriously compromise buffering capabilities, resulting in reduced physical endurance and greater susceptibility to fatigue.
Overbreathing: Effects on Health
Overbreathing, based on the chemistry of breathing described above, can trigger or exacerbate physical and psychological complaints such as: shortness of breath, breathlessness, chest tightness and pressure, chest pain, feelings of suffocation, sweaty palms, cold hands, tingling of the skin, numbness, heart palpitations, irregular heart beat, anxiety, apprehension, emotional outbursts, stress, tenseness, fatigue, weakness, exhaustion, dry mouth, nausea, lightheadedness, dizziness, fainting, black-out, blurred vision, confusion, disorientation, attention deficit, poor thinking, poor memory, poor concentration, impaired judgment, problem solving deficit, reduced pain threshold, headache, trembling, twitching, shivering, muscle tension, muscle spasms, stiffness, abdominal cramps and bloatedness. It is little wonder, then, why surveys have found that up to 60 percent of all ambulance calls in major US cities are the result of overbreathing!
Chronic vasoconstriction, magnesium-calcium imbalance, buffer depletion, and alkalosis (higher levels of blood and extracellular pH levels) as a result of overbreathing may in predisposed individuals trigger or exacerbate: phobias, migraine phenomena, hypertension, attention disorder, asthma attacks, angina attacks, heart attacks, cardiac arrhythmias, thrombosis (blood clotting) panic attacks, hypoglycemia, epileptic seizures, altitude sickness, muscle weakness and spasm, sexual dysfunction, sleep disturbances (apnea), allergy, irritable bowel syndrome (IBS), repetitive strain injury (RSI), and chronic fatigue.
In an important recent review article on the subject of hypocapnia (CO2 deficit) in the New England Journal of Medicine (J. Laffey and B. Kavanagh, 4 July 2002), the authors say:
“…extensive data from a spectrum of physiological systems indicate that hypocapnia has the potential to propagate or initiate pathological processes. As a common aspect of many acute disorders, hypocapnia may have a pathogenic role in the development of systemic diseases” (pages 44 and 46). And, they go on to say, “Increasing evidence suggests that hypocapnia appears to induce substantial adverse physiological and medical effects” (page 51).
Long-term vasoconstriction may also lead to ischemia in the brain and the heart (anemia in cells not adequately supplied with oxygen), result in reduced neurotransmitter synthesis that contributes to the onset of depression and other psychological syndromes, and chronically lower the threshold for most of the complaints listed above, e.g., chronic vasoconstriction and increased systemic vascular resistance may reduce the threshold for elevated blood pressure or precipitate angina attack in predisposed individuals.
Deregulated Respiration: Effects of Carbon Dioxide Deficit on Physiology
The most serious form of breathing deregulation is overbreathing, an all too common and serious state of behavioral-physiologic affairs. Overbreathing is undoubtedly one of the most insidious and dangerous behaviors/responses to environmental, task, emotional, cognitive, and relationship challenges in our daily lives. Overbreathing can be a dangerous behavior immediately triggering and/or exacerbating a wide variety of serious physical and mental symptoms, complaints, and deficits in health and human performance. Overbreathing* means bringing about carbon dioxide (CO2) deficit in the blood (i.e., hypocapnia) through excessive ventilation (increased “minute volume”)during rapid, deep, and dysrhythmic, maladaptive breathing, a condition that may result in debilitating short-term and long-term physical and psychological complaints and symptoms. The slight shifts in CO2 chemistry associated with overbreathing may cause physiological changes such as hypoxia (oxygen deficit), cerebral vasoconstriction (brain), coronary constriction (heart), blood and extracellular alkalosis (increased pH), cerebral glucose deficit, ischemia (localized anemia), buffer depletion (bicarbonates), bronchial constriction, gut constriction, calcium imbalance, magnesium deficiency, and muscle fatigue, spasm (tetany), and pain.*Note: “Overbreathing” is a behavior leading to the physiological condition known as hypocapnia, i.e., carbon dioxide deficit. “Hyperventilation,” although nomenclature synonymous with hypocapnia in physiological terms, is often used as a clinical term to describe a controversial psychophysiologic “syndrome” implicated in panic disorder and other clinical complaints.
The consequence is a miscalculation of local metabolic requirements that leads to less than the required amount of vasodilation, or to vasoconstriction, and thus to potentially serious deficits of oxygen (hypoxia) and glucose (hypoglycemia) as well as of other required nutrients for the optimal functioning of a wide variety of tissues and physiological systems (e.g., brain, heart, and lungs). This misinformation about metabolism also triggers constriction of other smooth muscles, e.g., in the bronchioles and the gut, thus potentially exacerbating both asthma and irritable bowel syndrome.
Carbon dioxide deficit means a reduction in carbonic acid and a corresponding shift of blood and extracellular fluid pH in the alkaline direction, i.e., above the normal range of 7.38 – 7.40; alkalosis is an immediate consequence of hypocapnea. Paradoxically, this results in an increase in oxygen saturation in the blood, because hemoglobin does not encounter pH levels that accurately reflect current metabolic requirements and is thus less inclined than it would otherwise be to release its oxygen; the pH level does not properly reflect metabolic requirements. Thus, although oxygen saturation is maximized, oxygen distribution is withheld where in fact metabolic needs significantly exceed those reflected by the reduced CO2 levels resulting from overbreathing.
The coupling of vasoconstriction and "disinclined" hemoglobin (because of higher pH levels) means significant compounding of oxygen distribution problems where oxygen deficits (hypoxia) are considerably greater than those brought about by vasoconstriction alone, e.g., deficits, in effect, that may exceed 50 percent in the brain. Combining these effects with glucose deficit in the brain, in the heart, and in other physiological systems can precipitate, exacerbate, and even originate serious consequences, including physiological and psychological complaints, symptoms, and syndromes of numerous kinds (see below).
Alkalosis, i.e., increased pH due to reduced levels of CO2, leads to yet further compromises. Extracellular fluid alkalosis increases cellular excitability and contractility (e.g., neuronal excitability in the brain) and thus actually increases oxygen demand, anaerobic metabolism, and antioxidant depletion (caused by excitatory amino acids). And, in fact, yet further worsening matters, alkalosis inhibits the negative feedback normally associated with lower pH levels that limit the production of metabolic acids themselves (e.g., lactate), and hence yet further compromises performance. Blood alkalosis leads to migration of calcium ions into muscle tissue, including both smooth (e.g., coronary, vasocerebral, bronchial, gut) and skeletal tissue, resulting in increased likelihood of muscle spasm (tetany), fatigue, and pain. And, platelet aggregation is increased, thus elevating the likelihood of blood clotting.Overbreathing is an insidious and unconscious habit, one that is not readily detectable. Overbreathing may be precipitated at stressful times of the day, during times of defensiveness and emotionality, during information overload, or upon the commencement of ordinary tasks through self-initiation or instructions from authority. Some individuals overbreathe with little provocation and may do so chronically, all day without knowing it. And, unfortunately overbreathing is even induced (often) and reinforced by professionals who teach breathing mechanics (e.g., diaphragmatic training) in the name of relaxation, improved health, and better performance. Good chemistry is fundamental to optimal behavioral-physiologic homeostasis, basic to optimizing health and performance.
A fast and simple way to increase CO2 levels.
A good rule of thumb is that the more oxygen you can get the better off you are going to be on ALL levels.
But really bad lungs cannot process excessive oxygen so we pay attention to that as we progress here and there.
Some need to increase CO2 for better oxygen uptake, some not. Too much CO2 is bad, too little is bad. Trying too hard to get the extra CO2 will tighten/restrict accessory breathing muscles so then we have increased CO2 but reduced breathing volume which is the primary factor in longevity (not CO2) .
I use our biofeedback instrument to measure these factors EXACTLY in real time.
Our test scores minimum is 45 seconds and ok is 60 seconds. Beyond that there is no proof that more is better or best so just take all this as a PART of the big picture and an easy way to increase plasma CO2.
At the bottom or end of a natural exhale, resist breathing in as long as you possibly can, even when moderate to severe hunger for air arrives, but without tightening your stomach muscles. Just hold the breathing back.
Time it in seconds. 45 minimum and 60 is passing.
How many seconds long is your extended pause?
To further lengthen the Optimal Extended Pause. Do two cycles. Time each cycle. It should improve a little or not or a lot.
The third cycle I want you to wait until you feel significant hunger for air and then stand up and walk quickly back and forth across the room with a timer in one hand and as soon as you absolutely must breathe then click the timer. What is occurring is the movement is distracting you and the hunger for air experience is somewhat lessened and you become more able to tolerate it and increase CO2 levels. Repeat this a few times and see how your extended pause time gets longer. Then just do the last one. The one when you stand and walk. Try 3-5 attempts five more times daily for several days until you level off or reach 60 most of the times. http://www.breathing.com/articles/carbon-dioxide.htm